Asynchronous parallel primal-dual block update methods
نویسنده
چکیده
Recent several years have witnessed the surge of asynchronous (async-) parallel computing methods due to the extremely big data involved in many modern applications and also the advancement of multi-core machines and computer clusters. In optimization, most works about async-parallel methods are on unconstrained problems or those with block separable constraints. In this paper, we propose an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint. Running on a single node, the method becomes a novel randomized primal-dual BCU with adaptive stepsize for multi-block affinely constrained problems. For these problems, Gauss-Seidel cyclic primal-dual BCU needs strong convexity to have convergence. On the contrary, merely assuming convexity, we show that the objective value sequence generated by the proposed algorithm converges in probability to the optimal value and also the constraint residual to zero. In addition, we establish an ergodic O(1/k) convergence result, where k is the number of iterations. Numerical experiments are performed to demonstrate the efficiency of the proposed method and significantly better speed-up performance than its sync-parallel counterpart.
منابع مشابه
Accelerated Primal-Dual Proximal Block Coordinate Updating Methods for Constrained Convex Optimization
Block Coordinate Update (BCU) methods enjoy low per-update computational complexitybecause every time only one or a few block variables would need to be updated among possiblya large number of blocks. They are also easily parallelized and thus have been particularlypopular for solving problems involving large-scale dataset and/or variables. In this paper, wepropose a primal-...
متن کاملAsynchronous block-iterative primal-dual decomposition methods for monotone inclusions
We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Determinist...
متن کامل2 7 N ov 2 01 5 Asynchronous Block - Iterative Primal - Dual Decomposition Methods for Monotone Inclusions ∗
We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Determinist...
متن کاملAvoiding communication in primal and dual block coordinate descent methods
Primal and dual block coordinate descent methods are iterative methods for solving regularized and unregularized optimization problems. Distributed-memory parallel implementations of these methods have become popular in analyzing large machine learning datasets. However, existing implementations communicate at every iteration which, on modern data center and supercomputing architectures, often ...
متن کاملDSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization
Machine learning with big data often involves large optimization models. For distributed optimization over a cluster ofmachines, frequent communication and synchronization of allmodel parameters (optimization variables) can be very costly. A promising solution is to use parameter servers to store different subsets of the model parameters, and update them asynchronously at different machines usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.06391 شماره
صفحات -
تاریخ انتشار 2017